Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Sodium hydrogen nitrilotriacetate dihydrate

Kang, Hong and Kang

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

 \bigcirc 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

electronic papers

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Na^{+} . $\begin{bmatrix} -OOCCH_2 \\ NH - CH_2COOH \end{bmatrix} \cdot 2H_2COOH$

Sodium hydrogen nitrilotriacetate dihydrate

Jun-Gill Kang,* Jung-Pyo Hong and Sung Kwon Kang

Department of Chemistry, Chungnam National University, Taejon 305-764, Korea Correspondence e-mail: jgkang@cuvic.cnu.ac.kr

Received 16 August 2000 Accepted 31 August 2000

Data validation number: IUC0000238

In the title compound, $\mathrm{Na}^+\cdot\mathrm{C_6H_8NO_6}^-\cdot\mathrm{2H_2O}$, the sodium ion is coordinated in a distorted octahedral manner by two carboxylate O atoms and two water O atoms. Each of these water molecules bridges two adjacent Na ions, resulting in two four-membered rings of the type Na–O–Na–O.

Comment

Recently, much attention has been paid to nitrilotriacetate acid (NTA), a multidentate complexing ligand with high specificity for various polyvalent metal ions. The trivalent NTA anion normally coordinates with alkali earth and transition metal ions as tetradentate ligands, binding through an N atom and three acetate O atoms to the metal (Barnett & Uchtman, 1979; Kaneyoshi *et al.*, 1999). However, for a few complexes, NTA is hexadentate or heptadentate (Martin & Jacobson, 1972). The structure of trisodium nitrilotriacetate has been proposed as polymeric with seven O atoms and one N atom coordinated to three sodium ions (Dely, 1967).

The crystal structure of the title compound, (I), contains sodium ions chelated by NTA molecules via two Na—O bonds [2.436 (2) and 2.345 (2) A]. The observed Na-O bond distances are within the range 2.28-2.67 Å, reported by Dely (1967). The O-Na-O angle is $88.35 (5)^{\circ}$. Two water molecules are involved in each molecular unit and bridge two adjacent sodium ions, with one water O atom coordinated to Na and Naⁱ, and the other to Na and Naⁱⁱ [symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 1 - y, -z]. The four Na–OW bond distances are in the range 2.345 (2)-2.561 (2) Å and the two OW-Na-OW angles are 91.36 (6) and 88.04 (6)°. The geometry around the sodium ion can be described as slightly distorted octahedral. The infinite crystal network is formed via four-membered Na-OW-Na-OW rings between two layers and via hydrogen bonds between two adjacent molecular units in a given layer.

Experimental

The title compound was obtained in the attempted preparation of an erbium–NTA complex, by mixing $0.50~M~\rm Er^{III}$ and $0.50~M~\rm Na_2NTA$ aqueous solutions in a 1:4 molar ratio. The pH of the solution was adjusted to 4.5. Colourless microcrystals of the title compound were obtained by slow evaporation.

Compound (I)

Crystal data

$Na^+ \cdot C_6 H_8 NO_6^- \cdot 2 H_2 O$	Mo $K\alpha$ radiation
$M_r = 249.16$	Cell parameters from 42
Orthorhombic, Pbca	reflections
a = 5.8620 (19) Å	$\theta = 6.75 - 12.57^{\circ}$
b = 12.3986 (16) Å	$\mu = 0.193 \text{ mm}^{-1}$
c = 26.854 (3) Å	T = 293 (2) K
$V = 1951.8 (7) \text{ Å}^3$	Needle, colourless
Z = 8	$0.40 \times 0.15 \times 0.10 \text{ mm}$
$D_x = 1.696 \text{ Mg m}^{-3}$	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.035$
$2\theta/\omega$ scans	$\theta_{\rm max} = 27.50^{\circ}$
Absorption correction: ψ scan	$h = -7 \rightarrow 7$
(North et al., 1968)	$k = -16 \rightarrow 16$
$T_{\min} = 0.873, T_{\max} = 0.981$	$l = -34 \rightarrow 34$
4474 measured reflections	3 standard reflections
2239 independent reflections	every 97 reflections
1731 reflections with $I > 2\sigma(I)$	intensity decay: 3.0%

Refinement

refinement

$w = 1/[\sigma^2(F_o^2) + (0.0544P)^2]$
+ 0.3629P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\text{max}} = 0.26 \text{ e Å}^{-3}$
$\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °) for (I).

Na1-O3	2.3450 (15)	Na1-O1	2.4362 (16)
Na1-OW1	2.3778 (16)	Na1-OF Na1-OW2	2.4712 (18)
Na1-OW1	2.4271 (18)	Na1-OW2 ⁱⁱ	2.561 (2)
		::	
O3-Na1-OW1	92.86 (6)	O3-Na1-OW2"	98.61 (6)
O3-Na1-OW1i	83.74 (6)	$OW1-Na1-OW2^{ii}$	90.38 (6)
$OW1-Na1-OW1^{i}$	88.04 (6)	OW1 ⁱ -Na1-OW2 ⁱⁱ	177.24 (6)
O3-Na1-O1	88.35 (5)	$O1-Na1-OW2^{ii}$	93.69 (6)
OW1-Na1-O1	175.53 (6)	$OW2-Na1-OW2^{ii}$	91.31 (6)
$OW1^{i}$ -Na1-O1	87.81 (6)	$Na1-OW1-Na1^{i}$	91.96 (6)
O3-Na1-OW2	168.83 (7)	Na1-OW2-Na1 ⁱⁱ	88.69 (6)
OW1-Na1-OW2	81.89 (6)	C2-O1-Na1	115.32 (12)
$OW1^{i}$ - Na1 - $OW2$	86.22 (6)	C4-O3-Na1	163.21 (13)
O1-Na1-OW2	96.17 (6)		<u> </u>

Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 1 - y, -z.

Positional parameters of H atoms bonded to C atoms were calculated geometrically. The H atoms bonded to the N and O atoms were observed from difference syntheses and refined isotropically. The N—H and O—H bond lengths are 0.92 (2) Å and 0.81 (4)–0.90 (3) Å, respectively.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Siemens, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL*.

This work is financially supported by the Korean Science and Engineering Foundation (KOSEF 971-0305-038-2) and by the Korean Science and Engineering Foundation through the

Research Center for Advanced Magnetic Materials at Chungnam National University.

References

Barnett, B. L. & Uchtman, V. A. (1979). *Inorg. Chem.* **18**, 2674–2678. Bruker (1996). *XSCANS Software Package*. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Bruker (1997). SHELXTL Software Package. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Dely, J. J. (1967). J. Chem. Soc. A, pp. 1708-1712.

Kaneyoshi, M., Bond, A. & Jones, W. (1999). Acta Cryst. C55, 1260–1262.
Martin, L. L. & Jacobson, R. A. (1972). Inorg. Chem. 11, 2785–2789, 2789–2795

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.